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Abstract
1.	 Bioacoustics is one of the most popular methods in bat research. Bat species are 

identifiable through their echolocation call features (e.g. peak frequency, duration, 
bandwidth) but the amounts of recordings to process generally require the help of 
machine learning algorithms. Yet, classifiers are only developed in some areas of 
the world and it may take dozens of years before they are available everywhere 
because reference calls are still lacking for numerous species. Our goal was to 
develop a universal classifier that would classify bat sonotypes according to call 
shape and peak frequency.

2.	 To achieve this, we first defined eight sonotype categories that cover all bat echo-
location shapes worldwide. We then trained a classifier using random forest de-
cision trees with a database of 1,154,835 labelled sound events containing bat 
and non-bat sounds from four continents. After classification, we developed a 
process to group detected sound events according to the probability scores of 
their predicted sonotype category and their peak frequency. We then tested the 
performance of our classifier on a different set of recordings originating from five 
continents.

3.	 Depending on the bat sonotype tested, the performance (area under ROC 
curve) of our classifier ranged between 0.77 and 0.99 for low-quality calls 
(SNR < 25 dB). Performance ranged between 0.89 and 1 for middle- or high-
quality calls (SNR ≥ 25 dB). The performance for bat feeding buzz classification 
ranged between 0.93 and 0.98 depending on the SNR. The classifier was not 
developed to classify bat social calls; the majority of them were classified as a 
bat sonotype.

[Correction added on 1 May 2023, after first online publication: Additional author names have been added and the Author contribution section has been updated.] 
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1  | INTRODUC TION

Bioacoustics, a growing field in science, brings together a wide 
range of disciplines, from the inventory of animal species to the 
characterisation of soundscapes, including sound source tracking 
and the study of social interactions. Most of these research domains 
are made possible by the existence of a specific signature inher-
ent in bioacoustic signals, which identifies a species or a group of 
species uniquely. In fact, animal vocalisations are designed to ful-
fil different functions, which may be classified into two categories: 
social communication on one hand (e.g. territorial marking, court-
ship, group gathering) and echolocation on the other hand (Obrist 
et  al.,  2010). For emitters to target conspecific receivers, social 
vocalisations necessarily bear features shared among individuals of 
the same species, even if their structure may show individual signa-
tures, for example in mother–pup interactions (Sauvé et al., 2015; 
Wiley, 2006). This means that one expects at least as many different 
vocalisations as there is of vocally active species within an ecosys-
tem (Sueur et  al., 2012). On the other hand, echolocation signals, 
because of their primary function of object location and recogni-
tion for orientation or foraging, are much more subject to evolu-
tionary convergences, and thus display much less diversity (Jones 
& Holderied, 2007; Schnitzler et al., 2003). For example, cetacean 
clicks resemble feeding buzzes of bats capturing prey (Jones, 2005; 
Madsen & Surlykke, 2013).

Nonetheless, unlike in dolphins, the numerous foraging strate-
gies extant in bats today, tied to specific echolocation call structures, 
make the unique identification of most bat species in a community 
possible thanks to the differences in the frequency, duration and 
shape of their echolocation calls (Au,  1997; Walters et  al.,  2013). 
Indeed, among the more than 1,400 extant bat species, food re-
sources include fruits, insects, nectar, vertebrates, fish and blood 
(Wilson & Mittermeier, 2019). Even among species exploiting a sim-
ilar trophic resource (e.g. insectivorous bats), adaptation to prey led 
to different echolocation and foraging strategies.

Three distinct signal structures are used by bats, each suited for 
a specific task: narrowband signals for long-range detection of the 

target, broadband signals for target localisation and classification, 
and long constant frequency signals with Doppler-shift compensa-
tion for detection and classification of fluttering insects (Schnitzler & 
Kalko, 2001). From these three categories, a multitude of combina-
tions are used by bats (Collen, 2012; Jones & Teeling, 2006). These 
different combinations can be referred to as ‘sonotypes’ (Fidelino & 
Gan, 2019; Fraser et al., 2020; López-Baucells et al., 2019; Ochoa 
et al., 2000), independently of signal frequency.

Acoustic monitoring of bats, thanks to its high cost-effectiveness, 
is gaining popularity all over the world, among scientists, conserva-
tion organisations, land managers or private consultancies. Bat in-
ventories are carried out to study species richness and abundance, 
which necessitates several nights to obtain a near to exhaustive as-
sessment (Fraser et al., 2020; Richardson et al., 2019). With dozens 
of nights of data accumulated across different study sites, the help 
of automated acoustic identification becomes necessary.

Several tools using machine learning were developed in the last 
years to detect and identify species of a given country or a biogeo-
graphical area (Bas et al., 2017; Chen et al., 2020; Kobayashi et al., 2021; 
Mac Aodha et al., 2018; Nocera et al., 2019; Obrist & Boesch, 2018; 
Rydell et  al.,  2017; Zamora-Gutierrez et  al.,  2016). This automated 
identification process can be used with success when combined with 
either manual validation or a statistical sorting based on the associated 
confidence indexes, depending on the objectives of the study (Barré 
et al., 2019; López-Baucells et al., 2019). Obviously, it is only possible 
to identify a species if its reference calls are present in the training set 
of the classifier, which restricts the usage of these software to spe-
cific areas. Free or commercially available bat classifiers currently only 
cover the Neotropics, North America and/or Europe. These develop-
ments are correlated with the degree of knowledge available in dif-
ferent regions of the world, and it might take several decades before 
auto-ID software are made available for Africa, Asia, South America 
or Australia (Walters et al., 2013). Yet, conservation issues are such 
that acoustic monitoring is utterly needed to assess the state of bat 
populations and design conservation plans accordingly.

Our goal was to build a universal bat classifier that could be used 
anywhere in the world. To train a taxonomic classifier for all extant 

4.	 The classifier is an open data format and can be used by anyone to study bats 
around the world. It can be used to spot acoustically described species but for 
which a classifier was not developed, and even to detect species that were not 
acoustically described yet. The grouping of sound events according to call sono-
type and peak frequency may be used to describe bat communities and compare 
the composition of acoustic niches across time and space. This allows the moni-
toring of bats and the assessment of bat conservation issues in any region of the 
world.

K E Y W O R D S

Africa, Asia, automatic ID, bioacoustics, call, classification, Neotropics, Passive Acoustic 
Monitoring
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species, it is necessary to possess a sample of all combinations of call 
sonotypes and frequencies used by bats around the world. Lacking 
this resource, we chose to approach this task in two steps: first train-
ing a classifier with bat sonotypes independently of call frequency, 
and then grouping these sonotypes after classification according to 
their frequency.

Choosing a universal definition of bat call types—or sonotypes—is 
a very difficult enterprise, although some attempts have been carried 
out, such as in Jones and Teeling (2006). However, this classification 
arbitrarily distinguishes long from short calls, when call duration is 
greatly influenced by the echolocation task performed (e.g. foraging vs. 
Commuting; Holderied, 2006), which may lead to confusions. Moreover, 
this basic classification does not represent the full diversity of echolo-
cation calls. For instance, it is not clear how the echolocation calls of 
Pteronotus davyi (constant frequency followed by frequency modulation 
and constant frequency again) should be classified according to this 
study. A second attempt by Collen (2012) started from the latter study 
and added more classes. Here again, this classification is not satisfactory, 
because it also uses the criterion of call duration, and because some spe-
cies may be classified in several of those categories depending on the 
echolocation task they perform. Therefore, a novel approach is needed 
to guarantee exhaustiveness and avoid any confusion.

Gathering sound references covering all combinations between 
acoustic types and frequency domains existing in the world is not 
possible. However, gathering a sufficiently large diversity of acoustic 
types so that bat calls could be robustly identified independently 
from absolute frequency is a feasible task. Our objectives were thus 
(a) to develop a comprehensive framework to classify the different 
bat sonotypes occurring worldwide, (b) to build a classifier of bat 
sonotypes, (c) after classification, to group calls of similar frequency 
inside the same acoustic sequence to isolate species recorded simul-
taneously and displaying the same sonotype and (d) to test the effi-
ciency of this classifier. The purpose of our tool was to be used for 
passive or active acoustic monitoring, in which it is common practice 
to count the number of sequences (i.e. recordings of a certain time 
interval) containing one or more bat calls of a given species (Fraser 
et al., 2020).

2  | MATERIAL S AND METHODS

2.1 | Definition of bat sonotypes

We first conducted a literature review of the diversity of bat sonotypes 
occurring in the world (Arias-Aguilar et  al.,  2018; Barataud,  2015; 
Barataud et  al.,  2013; Collen,  2012; Fenton & Bell,  1981; Lopez-
Baucells et al., 2016) and completed this literature review with our own 
bat acoustic surveys in Europe, South-East Asia, Central Africa, South 
America, the Neotropics and North America. It appeared that any 
bat echolocation call may be conveniently divided into a maximum of 
three consecutive elements, where the main element can be preceded 
by a prefix and followed by a suffix (see Figure 1). Each of those ele-
ments may contain one of the structures described by Schnitzler and 

Kalko, (2001), namely a narrowband (quasi-constant frequency, QCF), 
a broadband (frequency modulation, FM) or a constant frequency (CF) 
signal, produced by bats to achieve different echolocation tasks. FM 
may be upward (FMu) or downward (FMd). We thus chose to describe 
the diversity of sonotypes based on this method and found the occur-
rence of eight different sonotypes (Table 1; Supporting Information 
File 1). We chose to not create sonotype classes based on the pres-
ence of multiharmonics, because harmonics are more or less perceiva-
ble depending on recording quality, which may lead to confusions. We 
however quantified the intensity of potential harmonics with ancillary 
variables so that users can access this information: we selected the 
maximum value among the ratios of the average amplitude between 
the elements whose frequency is 1/2, 1/3, 2/3, 4/3 or twice that of 
the DSE and the amplitude of the DSE (these ratios are named Ramp); 
we used the 90% percentile of this value among the calls of the same 
groups (see section post-classification grouping). Positive values are 
usually associated with harmonics.

Species used most of the time a single sonotype. If more than one 
sonotype was displayed by a species—which was the case in Promops 
centralis, Molossops sp., Chaerephon sp. and Molossus sp.—we only la-
belled the dominant sonotype to build the classifier (see Supporting 
Information 1). Within a sonotype, shapes could vary significantly 
due to changes in call duration and bandwidth (see example in 
Figure  2), but the curvature still corresponded to the description 
of Table 1. When call duration was extremely short, for example, in 

F I G U R E  1   Illustration of the method for the definition of bat 
sonotypes with three examples on a sonogram (time as a function 
of frequency). The upper sonotype is a call divided into a frequency 
modulated (FM) prefix and a main quasi-constant frequency (QCF) 
element. The sonotype in the middle is a call containing only a main 
FM element. The lower sonotype is a call divided into an FM prefix, 
a main constant frequency (CF) element and an FM suffix
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FMd-QCF inferior to 3 ms, call shape necessarily resembled an FMd 
(Figure 2), but we still labelled it as FMd-QCF.

2.2 | Call labelling

Our sound database contains passive and active recordings of free-
flying bats as well as recordings of released individuals after capture 
(individuals were measured and identified in hand). Different acous-
tic recorders were used for these recordings and they are listed in 

Supporting Information 1. This table also lists the country in which 
recordings were made. 90% of the sounds labelled to build the clas-
sifier originated from Europe (France, Spain, Croatia, Lithuania, 
Poland and the United Kingdom), but also from other regions of the 
world, such as South America (Uruguay, French Guiana), Central 
America (Costa Rica), Africa (Benin) and Middle-East (Turkey; see 
Figure 3).

We used Tadarida-L 2.1 software (https://github.com/YvesB​
as/Tadar​ida-L) to detect and label reference calls. This software in-
cludes a detection function to isolate detected sound events (DSE), 
originating from a single acoustic source, in both frequency and time 
(see Bas et al., 2017 for more details). Each species name was then 
associated with a sonotype in a separate table.

Bat feeding buzzes (Griffin et al., 1960)—a series of more than 
five calls of very short intervals (<10 ms) produced by bats at an 
attempt of prey capture—were also labelled and constituted an 
additional acoustic class (different from a sonotype). These se-
quences are usually preceded by a gradual acceleration of rhythm 
and followed by a sudden resumption of a similar rhythm to that 
before the acceleration. Non-bat sounds were also labelled as 
additional acoustic classes. They include ground-crickets, bush-
crickets, grasshoppers, bees, beetles, cicadas, flies, frogs, moths, 
other insects, other mammals, birds and noise (electrical or 
mechanical).

In total, we labelled 321,132 DSE belonging to 9,245 record-
ings of 121 bat species or groups. We also labelled 833,703 DSE 

TA B L E  1   Description of bat sonotypes. FM, Frequency modulated; CF, Constant frequency; QCF, Quasi-constant frequency; d, 
downward; u, upward. See Figure 1 for the definition of prefix, main element and suffix

Sonotype Prefix Main element Suffix Sonogram Example species

FMd-QCF Downward FM or 
none

QCF — Pipistrellus pipistrellus, 
Lasurius borealis

FMu-QCF Upward FM QCF — Promops centralis

QCF-FMd — QCF Downward FM or 
none

Peropteryx macrotis, Molossus 
molossus

CF-FMd — CF Downward FM Hiposideros commersoni, 
Noctilio leporinus

FMu-QCF-FMd Upward FM QCF Downward FM Cormura brevirostris

FMu-CF-FMd Upward FM CF Downward FM Rhinolophus ferrumequinum, 
Pteronotus cf. parnellii

FMd — Downward FM — Myotis nattereri, Carollia 
perspicillata

CF-FMd-CF CF Downward FM CF Pteronotus personatus

F I G U R E  2   Example of shape variation for sonotype ‘FMd-QCF’ 
represented as sonogram
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belonging to 13,625 recordings of 153 non-bat species or noise 
types (see Supporting Information 1 in which the column N_DSE in-
dicates the number of DSE labelled).

2.3 | Building of the classifier

We used Tadarida-C (https://github.com/YvesB​as/Tadar​ida-C) on R 
(R Core Team, 2016) to assemble the table containing the acoustic 
parameters of all labelled DSE and to build the classifier. Tadarida-C 
builds classifiers based on the random forest method for machine 
learning (see Bas et al. (2017) for more details). We used all of the 
acoustic features measured by Tadarida-L to build the classification 
trees (see the list at https://github.com/YvesB​as/Tadar​ida-L/blob/
maste​r/Manual_Tadar​ida-L.odt), except for features directly related 
to absolute frequency, because we wanted to define sonotypes in-
dependently of frequency. Nonetheless, to help distinguish birds 
from bats in the lowest frequencies, we added a binary feature, 
which took the value of 1 if the frequency of the master point (the 
highest amplitude value among the elements within the DSE de-
fines the master point) was superior to 17 kHz where most bat calls 
and only harmonics of bird calls occur, or 0 in the other case. We 
kept features related to relative frequency (e.g. bandwidth, which 
is maximal frequency minus minimum frequency) to build the clas-
sification trees.

2.4 | Classification

We modified Tadarida-C (see Ta_Tc_Sonotype.R and ClassifC1_
Sonotype.R) to discard DSE below 8 kHz, which is the lowest peak 
frequency known to be emitted by a bat (Leonard & Fenton, 1984). 
We also discarded DSE suspected to be from the same bat call as 

the previous DSE, but separated by a short silence due to hetero-
geneous sound propagation. For this, we removed all DSE that were 
separated from the previous DSE by <5 ms.

Before classification, calls suspected to be higher harmonics 
of another DSE were discarded by excluding calls starting and 
ending simultaneously to DSE of a lower frequency and a higher 
amplitude. Nonetheless, the information of a call having a har-
monic still exists in Tadarida features. Therefore, bat calls were 
classified taking into account the presence of their harmonics. 
To discard DSE suspected to be harmonics, we isolated DSE that 
occurred simultaneously and only kept the one with the highest 
amplitude.

We used Tadarida-C to obtain predictions of the acoustic iden-
tity (i.e. the bat and non-bat acoustic classes) of each DSE. Each DSE 
prediction is accompanied by a prediction probability for each of the 
possible acoustic classes present in the table containing the acoustic 
parameters of all labelled DSE.

Our R scripts for this section and the next one can be found at 
(https://doi.org/10.5281/zenodo.5483030; folder ‘Sonotypes’).

2.5 | Post-classification grouping of detected 
sound events

Our goal was to build a ready-to-use classifier for bat activity sur-
veys. Since the majority of them are based on the quantification of 
sequences (or files) containing one or more bat calls of the same 
species (Fraser et  al.,  2020), we followed the same process. We 
processed each wav file separately. We modified Tadarida-C (see 
AggContacts_Sonotype.R) to group DSE after classification. This 
section aimed to group DSE belonging to the same species accord-
ing to their classification probability score, following the algorithm 
of Tadarida-C (Bas et  al.,  2017), but also according to their peak 

F I G U R E  3   Map of the origin of the call library used to build the classifier. Numbers indicate the number of DSE (detected sound events) 
labelled and used. Black circles, bat DSE; White circles, non-bat DSE
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frequencies (Fpeak), that is, each group of DSE in a file will eventually 
be identified uniquely by an acoustic class combined with a peak 
frequency. Thus, if several species are present, several groups of 
DSE are expected.

For this, several rounds were conducted until each DSE were at-
tributed a group (see Figure 4). At each round, the most probable 
acoustic class in the file was identified by selecting the best predic-
tion probability score. The acoustic class containing this best score 
was defined as ‘dominant’ for the current round.

At each round, we applied the density function of the stats 
package of R (with 30% of the default bandwidth) to the Fpeak of all 
DSE within the file to obtain their probability distribution and iso-
late their modes. The presence of different DSE of different fre-
quencies in a file translates into the presence of different modes. 
For instance, if three species produce calls in three different fre-
quency ranges, three peaks (i.e. modes) will appear in the density 
plot (see chart in Figure  4). We then selected the mode closest 
to the Fpeak of the DSE with the best prediction probability score 
and called it ‘dominant mode’. If only one DSE remained per file, 
the dominant mode took the value of the Fpeak of the remaining 
DSE. All DSE with a Fpeak within a 5  kHz range of the dominant 
mode and with a probability score in the dominant acoustic class 
superior to 0.05 were attributed a final ID corresponding to the 
dominant acoustic class and stored for output. All other DSE were 
processed in the next round until there was no DSE left. We chose 
to use this conservative approach to avoid false positives, that is, 
sonotype identification supported only by inconsistent probabili-
ties. Before grouping, each DSE was associated with a prediction 
probability score for each acoustic class; after grouping, the final 
prediction probability score of a group of DSE of a given acoustic 
class is the highest score among the DSE of this group for this 
acoustic class.

Instructions on how to download and how to use the classifier 
are available in the README file at (https://doi.org/10.5281/ze-
nodo.5483030; folder ‘Sonotypes’).

2.6 | Classifier performance

We tested the efficiency of the classifier on recordings from study 
sites that were not used to build the classifier. These new recordings 
originated from six regions of the world, namely Europe (France), 
North America (United States of America), Central America (Costa 
Rica), South America (French Guiana), Asia (Cambodia) and Africa 
(Benin; see Supporting Information 2 and Figure  5). For each re-
gion, we used recordings originating from three different locations. 
The mean distance between locations within the same country was 
241 km (min = 14 km, max = 944 km). On each location, we used full-
night or partial-night recordings (i.e. first hours of the night), in which 
files were cut to have a maximum duration of 5 s.

The last output of the classifier is a table (see Table  S3 at 
(https://figsh​are.com/artic​les/datas​et/Valid​ation_table_for_the_
bat_sonot​ype_class​ifier/​15149523) and its column description in 
Table S4) in which each line corresponds to a group of DSE of the 
same file which were grouped together according to their acoustic 
class and their peak frequency (see previous section). To test the ef-
ficiency of the classifier for each bat sonotype, for feeding buzzes, 
and for the most common non-bat classes (bush-crickets, noise and 
bird), we did a stratified random selection of five files per detected 
acoustic class at each location. The random selection was strati-
fied according to the time of the night and the probability scores 
to ensure a representativity of the variety of sounds analysed and 
of the efficiency of the classifier. It could happen that <5 files per 
acoustic class were available. For each file checked, we browsed all 

F I G U R E  4   Example of the post-
classification grouping of detected sound 
events. All files are processed at each 
round. DSE, Detected Sound Event; AC, 
probability score of the Acoustic Class; 
Fpeak, frequency at the maximum energy
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acoustic classes detected and noted the occurrence of false pos-
itives, true positives and false negatives. Files could contain the 
same acoustic class several times but in different frequency modes 
and we checked each of them. For this, we visualised the file sono-
grams on Syrinx (John Burt, USA). If the true nature of the acoustic 
class was ambiguous (e.g. in the case of low signal-to-noise ratios), 
to avoid confirmation bias resulting from a personal interpretation 
of the call identity, we did not classify it as a positive or a negative 
and left it unchecked. If the file was too noisy to check it without 
ambiguity from the checker's perspective, or if there were many 
overlapping calls, we left the file apart and did not check it (see 
Figure A1 in the Supporting Information File for the distribution of 
SNR across checked and unchecked groups of DSE and see Figure 
A2 in the Supporting Information File for examples of sonograms). 
We checked files containing obvious bat social calls (see Chaverri 
et al., 2018) apart and results are presented separately since our 
sonotype classification was not designed to cover all the complexity 
of those social calls. For this analysis, we only checked the groups 
of calls in the file that corresponded to social calls. We checked 
them as if they were echolocation calls, that is, if the call had an 
FMd shape and was classified as such, we considered it a true pos-
itive. We classified calls whose shape was not listed in Table 1 as 
‘complex’.

All checked sound sequences are available at (https://figsh​are.
com/artic​les/media/​Sounds_used_to_valid​ate_an_autom​atic_class​
ifier_of_bat_sonot​ypes/15141201).

We used receiver operator characteristic (ROC) curves to as-
sess the efficiency of the classifier for the different acoustic classes. 
These curves are created using the rate of true and false positives. 
Since our classifier is probabilistic, the ROC curves take the proba-
bility of classification into account. As explained in the previous sec-
tion, the probability of classification of a group is the highest score 
among the DSE of this group for the predicted acoustic class. We 
made one ROC curve for each of three different classes of signal-to-
noise ratios (SNR) to take into account the recording quality. More 
precisely, for each acoustic class identified by the classifier within a 
file, we calculated the median value of calls maximum amplitudes. 
The median value gives a less important weight to outliers and is 
thus more representative of the majority of the calls in a file. We 
then created three amplitude classes: <25 dB, 25–75 dB, and >75 dB 
SNR. We calculated the area under the curve (AUC) to provide a nu-
merical summary of the performance of the classifier.

The efficiency of the segregation of species according to the fre-
quency modes (see Figure 4) could not be assessed quantitatively 
since we do not have a perfect knowledge of bat acoustic identi-
fication in all countries sampled. Therefore, we could not assess 
whether two different species were put in the same frequency 
mode or not. We thus described whether all calls originating from 
the same individual—based on the similarity of calls and on the inter-
call duration—were classified in the same group (i.e. one species) or 
if they were classified in several groups of frequency modes (i.e. sev-
eral species). If calls were seemingly produced by the same individual 

F I G U R E  6   Receiver operating characteristic (ROC) curves between the confidence score of the false-positive rate (FPR) and the true-
positive rate (TPR) for each acoustic class. Grey shades represent the median of the maximal amplitude among the calls classified as the 
sonotype that was checked: light grey <25 dB, dark grey 25–75 dB, black >75 dB. AUC (Area under the curve) is a proxy of the performance 
of the classifier. N = number of groups of calls. Detailed ROC curves for each country are also provided in the appendix (Figures A3–A8 in 
the supplementary information file). Micro- and macro-averaged ROC curves are shown in Figure A9 in the supplementary information file. 
FM, frequency modulated; QCF, quasi-constant frequency; CF, constant frequency; d, downward; u, upward. The summary of this figure can 
be found in Table A1 in the Supporting Information

F I G U R E  5   Map of the origin of study sites sampled to assess the performance of the classifier
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and yet segregated in two frequency modes, we noted in what cir-
cumstances this occurred.

3  | RESULTS

3.1 | Efficiency of the classifier

The percentage of files in which not a single DSE was found by 
Tadarida—or which only contained DSE below 8 kHz and were thus dis-
carded by Tadarida—is equal to 7.1%. In the rest of the dataset, we con-
sidered 715 files according to our stratified random sampling design. In 
all, 54 files were considered separately as they contained social calls. In 
total, 47 files (444 groups of calls) were too noisy to be checked. In the 
remaining 614 files, we checked 3,575 groups of calls classified by the 
classifier (see Table A3). In these files, we noticed three false-negative 
groups: three FMd-QCF. In the 614 files that were checked, 239 groups 
of calls were left unchecked because the true nature of the acoustic 
class was ambiguous (e.g. in the case of low signal-to-noise ratios).

ROC curves and their AUC (area under the curve) show that 
the highest performance of the classifier is for the sonotype FMu-
CF-FMd, and that this performance is very little affected by call 
amplitude (Figure 6). The classifier has a similar performance for CF-
FMd-CF calls; however, the sample size is very low for this sonotype 
(n = 21). The classifier shows the worst performance for the sono-
type QCF-FMd when calls have an amplitude lower than 25 dB (AUC 
= 0.78), but the AUC for this sonotype varies between 0.92 and 0.94 
when call amplitude is 25 dB or louder. The classifier has a very high 
performance for buzzes, and this performance is very little affected 
by call amplitude (AUC between 0.93 and 0.98).

The confusion matrix (Table 2) shows confusions between acous-
tic classes. Bush-crickets were classified 47% of the time as a non-
bat (other than bush-cricket), 7% of the time as a bat sonotype and 
10% of the time as a buzz. FMd-QCF were classified 19% of the time 
as FMd, which happened very often when individuals produced very 
short calls. QCF-FMd were classified 21% of the time as FMd-QCF, 
which happened often for calls with extremely small FMd at the end 
(short bandwidth). Non-bat DSE were classified 11% of the time as bat 
or buzz; bat or buzz DSE were classified 4.6% of the time as non-bat.

3.2 | Performance of the frequency-based 
grouping of detected sound events within 
acoustic classes

DSE emitted by one bat species were most of the time grouped in 
one unique frequency group except for three cases: species produc-
ing calls with alternating frequencies with a difference of more than 
10 kHz in peak frequency (e.g. Molossus molossus) appeared in two 
different frequency groups; buzzes emitted by one species were 
grouped on average in 1.6 different groups (maximum = 4); FMd calls 
emitted by one species were grouped on average in three different 
groups (maximum = 7).

3.3 | Bat social calls

80% of the 111 checked social calls were classified as a bat sonotype 
that matched their shape (Table A2). Among the remaining 20%, 31 
calls could not be assigned to one of the classes of Table 1 and we 
thus described them as ‘complex calls’. 55% of these 31 complex calls 
were classified by the classifier as FMd-QCF. It must be noted that 
67% of the files containing social calls that were checked belonged 
to the same study site (Valley of fire, USA) and were social calls of 
Tadarida brasiliensis. If this site is removed, 54% of the 37 checked 
social calls were classified by the classifier as a bat sonotype that 
matched their shape (results not shown). Among the remaining 46%, 
17 calls were ‘complex calls’. 40% of these 17 complex calls were 
classified by the classifier as FMd-QCF.

4  | DISCUSSION

The framework that we developed to classify the different bat so-
notypes is a quick and easy approach to distinguish the main bat 
acoustic strategies occurring worldwide, without having to collect 
an exhaustive sound reference database of the local species calls. 
Because the definition of sonotypes does not take call duration into 
account, this objective tool avoids the classification of the same spe-
cies in different sonotypes, except in the very few species emitting 
alternating call shapes (e.g. Promops centralis).

4.1 | Classifier performance

The performance of our classifier was tested with success on record-
ings from bat communities from five different continents (Figure 5). 
The rate of false negatives (i.e. calls that were not at all classified) 
was close to zero; a similar result was obtained in another assess-
ment of the performance of Tadarida for another classifier (Barré 
et  al.,  2019). Thus, users can be confident that they will not miss 
sound events of interest.

It must be noted that most bat classifiers have a relatively high 
SNR threshold for classification, below which classification is not 
provided (Obrist & Boesch, 2018; Stahlschmidt & Brühl, 2012). This 
is not the case with Tadarida that aimed at detecting almost all hear-
able bat calls, only 3 bat sequences not being detected on 646 files. 
Here, bat sonotypes were classified with an AUC superior to 0.9 for 
signals of good quality (SNR > 25 dB), and with an AUC superior to 
0.7 for signals of low quality (SNR < 25 dB). Moreover, the perfor-
mance was tolerant to low SNR for the three sonotypes containing a 
CF element and for feeding buzzes. Although call duration and band-
width influenced the success of bat sonotypes classification, since 
for instance short FMd-QCF were often classified as FMd, confu-
sions between bats and non-bats were close to insignificant.

The sonotype FMd led to multiple groups although produced 
by only one individual, which is due to high variability in the peak 
frequency. Additionally, species using alternated frequencies led to 
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multiple groups. These results can be adjusted by users by changing 
the tolerance to frequency input used to make groups of calls.

Among species using FMd, important differences exist in the 
way how energy is distributed among call harmonics; in the family 
of Phyllostomidae and in the genus Plecotus (Vespertilionidae), the 
same amount of energy is emitted in the different harmonics, while 
in the genus Myotis (Vespertilionidae), energy is stronger on the fun-
damental frequencies (Jones & Teeling, 2006). These differences are 
not accounted for by our classifier. However, to help users in this 
task, the potential presence of harmonics detected by Tadarida-L is 
shown in a dedicated column of the output (i.e. Ramp90, for which 
positive values are usually associated with harmonics).

A possible amelioration of sonotype classification lies in deep 
learning methods that showed encouraging results in bat acoustic 
identification (Chen et al., 2020; Kobayashi et al., 2021; Mac Aodha 
et al., 2018). However, to our knowledge, there is still no extensive 
comparison between deep learning and random forest approaches 
for the classification of bat echolocation calls.

4.2 | Usage perspectives

Although our method cannot approach the performance of a classi-
fier trained to identify calls at the species level in specific bat com-
munities (e.g. Ayala-Berdon et al., 2020; Barré et al., 2019; Obrist 
& Boesch, 2018), it is very convenient to discriminate different bat 
guilds (Denzinger & Schnitzler,  2013) in any geographical context. 
First, sonotypes can be used to separate the main acoustic strate-
gies, such as flutter detecting foragers (FMu-CF-FMd, CF-FMd or 
CF-FMd-CF structures) versus gleaning foragers (FMd structure) 
versus aerial foragers (FMd-QCF, FMu-QCF, QCF-FMd or FMu-
QCF-FMd structures; Denzinger & Schnitzler, 2013). Then, frequen-
cies may be used to separate species according to their spatial niche, 
such as open space foragers (<30  kHz) versus edge space forag-
ers (between 30 and 60 kHz; Denzinger & Schnitzler, 2013; Kalko 
et al., 2008; Roemer et al., 2019). If, as we expect, species diversity 
matches the diversity of sonotype–frequency combinations, our 
classifier might be used to assess the state of bat communities any-
where in the world (e.g. Fidelino & Gan, 2019).

Another use of our classifier is to detect species that were de-
scribed acoustically in geographical areas for which no specific 
classifier was developed and reference recordings are still scarce. 
Using our classifier, it is possible to target the species sonotype and 
frequency range in large amounts of recordings. The classifier can 
even be used for species that have not been described acoustically 
yet since they will be classified according to their sonotype and peak 
frequency. Detecting undocumented species will be especially facil-
itated in areas where few sympatric species are extant, for example, 
on islands, deserts or high latitudes (Barataud & Giosa, 2013; Mifsud 
& Vella, 2019; Walters et al., 2013; Ziegler et al., 2016).

Finally, it is possible to specifically study bat foraging behaviour 
using the ‘buzz’ acoustic class of our classifier. Possible applications 
are the comparison of foraging activity across habitats, management 

practices and seasons (Ancillotto et al., 2021; Froidevaux et al., 2017; 
Toffoli & Rughetti, 2020; Weier et al., 2018), the study of pest regu-
lation by bats (Charbonnier et al., 2014, 2021; Rodríguez-San Pedro 
et al., 2020; Salvarina et al., 2018), or of group foraging and competi-
tion (Gager, 2019; Lewanzik et al., 2019; Roeleke et al., 2020).
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